If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=64t+16t^2
We move all terms to the left:
0-(64t+16t^2)=0
We add all the numbers together, and all the variables
-(64t+16t^2)=0
We get rid of parentheses
-16t^2-64t=0
a = -16; b = -64; c = 0;
Δ = b2-4ac
Δ = -642-4·(-16)·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-64}{2*-16}=\frac{0}{-32} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+64}{2*-16}=\frac{128}{-32} =-4 $
| 4x3+6x2+18x+5=0 | | 2(3x+5)=-49+5 | | 6x+13x-16+7x+12=360 | | H=192t-16t^2 | | 11+19=-3(9x-10) | | -14+42=-4(x+4) | | (2x-2)^2=54 | | (x-2)^2-(81)=0 | | 2x^+4x-9=0 | | 4(x+)+4=32 | | 4x+8+4x+4=180 | | 2(x-3)-3x=15-(x+6) | | Y=1.23x+1.86 | | 3(x+2)=2(+ | | F(x)=-0.5x+6 | | 2-(2-x)=0 | | 4(2a+3)=12-8a | | 3x−2.4= | | (7x+11)+(16x-38)=180 | | 3x(x-2)=11x^2-13x | | 12w/48=12 | | 3(x-6)^2+10=46 | | 45=x/7 | | 5(6-3r)+2(2r-1)=72 | | 3m=5(m-3)+3 | | 7(3n+5)+2(5-7n)=-11 | | 3x+9+120=22x-4 | | 10/30t+3=5 | | 7x/8x=56 | | 76=2(n+6)+5(n+3) | | 0=x-53 | | 110=0.5(8+b)11 |